
ebscousergroup.org1

Building Web

Apps to

Streamline

FOLIO

Workflows

Guy Dobson, Drew University

gdobson@drew.edu

see also folio.drew.edu

ebscousergroup.org2

Why would you want to?

to streamline FOLIO workflows

+ to do things that the UI isn’t prepared to do

= to make life easier for you and your colleagues

ebscousergroup.org3

backstory, basics, caveats, and disclaimers

ebscousergroup.org4

backstory

Approx 20 years ago, when I was working for the Bergen County

Cooperative Library System, I took Sirsi’s week-long API course.

When I started working at Drew, on 2/14/2011, 20% of my time was

devoted to implementing Kuale Ole with 4 other NJ academic libraries.

In 2019 Drew University was looking to move self-hosted

services, like our Sirsi Symphony ILS, to the cloud.

In 2020 we signed a 5-year contract with EBSCO to host a

FOLIO environment for us w/out an implementation team.

Since we were self-hosted, and I was familiar with Sirsi’s API,

I was able to get our data out of Symphony and load it into FOLIO.

ebscousergroup.org5

basics : how do web apps work?

librarian web app perl drew.folio.ebsco.com

folio.drew.edu

ebscousergroup.org6

basics : how do APIs work?

curl {what} {who} {where}

{what} : POST (create), GET (read), PUT (update), or DELETE

{who} : an X-Okapi-Token, included as a header*, that is user specific

*the headers also include Content-type and X-Okapi_Tenant information

{where} : a task specific endpoint that may or may not end with a query or a UUID

when {what} requires data it is supplied in the form of a JSON document as is any data that is returned

(though not all endpoints have anything to say when they are done – when this happens no news is

good news, usually) – e.g…

curl -s -X GET -H $headers https://okapi-drew.folio.ebsco.com/instance-storage/instances?query=hrid==in00001095127

…returns:
base URL endpoint

ebscousergroup.org7

basics : how do APIs work?

{

"instances": [

{"id":"371a1dba-85e8-4fc1-99ac-259938ca2ed5","_version":2,"hrid":"in00001095127","source":"MARC","title":"There's treasure everywhere / a Calvin and Hobbes collection by Bill Watterson.","indexTitle":"There's treasure everywhere

/","alternativeTitles":[{"alternativeTitleTypeId":"8a3b90b0-c9e9-4e0e-b921-1aed031f9fc6","alternativeTitle":"Calvin and Hobbes. Selections"},{"alternativeTitleTypeId":"fe19bae4-da28-472b-be90-d442e2428ead","alternativeTitle":"There is treasure

everywhere"}],"editions":[],"series":["Calvin and Hobbes."],"identifiers":[{"value":"95083102","identifierTypeId":"4d9a5d3a-cb8d-4783-8e5b-65df5d09c15d"},{"value":"(ckey)a944382","identifierTypeId":"fe19bae4-da28-472b-be90-

d442e2428ead"},{"value":"(Sirsi) a944382","identifierTypeId":"fe19bae4-da28-472b-be90-d442e2428ead"},{"value":"(OCoLC)ocm34360465","identifierTypeId":"fa02ef8b-b0be-4183-ad46-38060d23c402"},{"value":"0836213130","identifierTypeId":"fabf0120-

1511-4dee-b5c5-8e23da43ea84"},{"value":"9780836213133","identifierTypeId":"fabf0120-1511-4dee-b5c5-8e23da43ea84"},{"value":"0836213122 (paperback)","identifierTypeId":"fabf0120-1511-4dee-b5c5-8e23da43ea84"},{"value":"9780836213126

(paperback)","identifierTypeId":"fabf0120-1511-4dee-b5c5-8e23da43ea84"},{"value":"9780740777950","identifierTypeId":"fabf0120-1511-4dee-b5c5-8e23da43ea84"},{"value":"9781417775842 (turtleback books)","identifierTypeId":"fabf0120-1511-4dee-

b5c5-8e23da43ea84"},{"value":"0740777955","identifierTypeId":"fabf0120-1511-4dee-b5c5-8e23da43ea84"},{"value":"141777584X","identifierTypeId":"fabf0120-1511-4dee-b5c5-8e23da43ea84"},{"value":"9781415505199 (Paw

Prints)","identifierTypeId":"fabf0120-1511-4dee-b5c5-8e23da43ea84"},{"value":"1415505195 (Paw Prints)","identifierTypeId":"fabf0120-1511-4dee-b5c5-8e23da43ea84"},{"value":"9780590972086","identifierTypeId":"fabf0120-1511-4dee-b5c5-

8e23da43ea84"},{"value":"0590972081","identifierTypeId":"fabf0120-1511-4dee-b5c5-8e23da43ea84"},{"value":"(OCoLC)34360465","identifierTypeId":"fa02ef8b-b0be-4183-ad46-38060d23c402"}],"contributors":[{"name":"Watterson,

Bill,","contributorTypeText":"author, artist.","contributorNameTypeId":"9c97ac45-f339-45db-a0a7-2bd33309adb9","primary":true},{"name":"Harry A. Chesler Collection of Cartoon Art and Graphic Satire","contributorNameTypeId":"542a89f1-33a0-4072-

9899-f6297e8d0709","primary":false}],"subjects":["Calvin and Hobbes (Comic strip)","Calvin (Fictitious character : Watterson)--Comic books, strips, etc","Hobbes (Fictitious character)--Comic books, strips, etc","Wit and humor, Pictorial","Comic books,

strips, etc","Comics (Graphic works)"],"classifications":[{"classificationNumber":"PN6728.C34 W3874 1996","classificationTypeId":"fe19bae4-da28-472b-be90-d442e2428ead"},{"classificationNumber":"741.56973","classificationTypeId":"fe19bae4-da28-

472b-be90-d442e2428ead"}],"publication":[{"publisher":"Andrews and McMeel","place":"Kansas City, Missouri", "dateOfPublication":"[1996]","role":"Publication"},{"dateOfPublication":"♭1996"}], "publicationFrequency":[], "publicationRange":[],

"electronicAccess":[], "instanceTypeId":"03410cfb-1fca-4ea4-9cce-b03cd0477d03","instanceFormatIds":["3d68d5eb-8ca8-4ca0-81c1-a07c3abdca9d"],"instanceFormats":[],"physicalDescriptions":["175 pages : chiefly illustrations (some color) ; 23 x 31

cm."],"languages":["eng"],"notes":[{"note":"The popular comic-strip duo roam their many worlds in search of treasure and adventure, approaching warp speed, fighting off killer bicycles, conducting dad polls, and creating legions of snowmen and other not-

so-alien beings","staffOnly":false,"instanceNoteTypeId":"fe19bae4-da28-472b-be90-d442e2428ead"},{"note":"GIFT; Bruce Lancaster; 2018; NjMD","staffOnly":false,"instanceNoteTypeId":"fe19bae4-da28-472b-be90-d442e2428ead"}],

"administrativeNotes":[], "modeOfIssuanceId":"78df0873-a777-43b0-ae99-9c84faac3e4d","previouslyHeld":false,"discoverySuppress":false,"statisticalCodeIds":[],"statusUpdatedDate":"2023-03-28T11:50:21.777+0000",

"tags":{"tagList":[]},"metadata":{"createdDate":"2023-03-28T11:50:21.777+00:00","createdByUserId":"308a01e4-1108-4ea3-aa25-8b1b32cf7643","updatedDate":"2023-03-28T11:50:22.083+00:00","updatedByUserId":"308a01e4-1108-4ea3-aa25-

8b1b32cf7643"},"holdingsRecords2":[],"natureOfContentTermIds":[]}],

"totalRecords": 1,

"resultInfo": {"totalRecords":1,"facets":[],"diagnostics":[]}

}

ebscousergroup.org8

caveats and disclaimers

Any and all mistakes and/or misunderstandings contained in the following are mine and mine alone.

CAUTION! Proceed at your own risk.

Measure twice, cut once.

TIMTOWTDI

“Let’s be careful out there.” ~ Sergeant Phil Esterhaus

Hill Street Blues

ebscousergroup.org9

Table of Contents

post permissions

requests pick list

check item status

delete items, or, update periodicals

eBook updates

update users

add titles

each chapter includes:

• a brief description

• a comparative list of steps (aka clicks)

• screen shots

• “how it works”

• flow charts

ebscousergroup.org10

post permissions

ebscousergroup.org11

post permissions

Sometimes APIs don’t work because the

username does not yet have permission

to do what needs to be done. The

required permission can be copied and

pasted from the error message into the

web app.

hmm: I wonder why the folio_admin

permission set can’t do everything?

via the UI
1. Apps

2. Users

3. search…

4. Actions

5. Edit

6. scroll down

7. open User

Permissions

8. scroll down

9. Add permission

10. search…

11. check a box

12. Save & close

13. Save & close

via the web app
1. post permissions

2. copy the wanted

permission from

the error message

3. and paste it into

the permission text

box

• the default

username is admin

4. make it so

ebscousergroup.org12

1

ebscousergroup.org13

3

4

ebscousergroup.org14

ebscousergroup.org15

how it works

• makeItSo.pl collects the $username and $permission from enterData.pl

1. GET /users?query=username=="$username" supplies the userId

2. GET /perms/users?query=userId=="$userId" supplies the permissionUsersId

3. POST -d ‘{"permissionName":"$permission"}‘ /perms/users/$permissionUsersId/permissions does the deed

ebscousergroup.org16

how it works

ebscousergroup.org17

requests pick list

ebscousergroup.org18

requests pick list

This web app is all about trying to use

less paper. The UI prints one request

per page ~ we wanted as many as can

fit on each page. They are sorted by

location and call number

via the UI
1. Apps

2. Requests

3. Request type: Pages

4. Request status: Open –

not yet filled

5. Actions

6. Print pick slips for

circulation and

reserves

via the web app
1. requests pick list

2. right click

3. Print…

ebscousergroup.org19

1

ebscousergroup.org20

2

3

ebscousergroup.org21

how it works

1. GET -d 'limit=0' /request-storage/requests?query=requestType==Page

this returns the number of requests to be considered (aka totalRecords)

2. GET -d 'limit=$totalRecords' /request-storage/requests?query=requestType==Page

this returns all of the “Page” requests so that they can be sifted to find those with an “Open - Not yet filled” status

it also supplies the item's barcode, holdingsRecordId, requester.firstName, requester.lastName, and title

3. GET /holdings-storage/holdings/$holdingsRecordId

this supplies the location and callNumber

• Perl sorts the list on location and call number and delivers it as a textarea with instructions for printing

ebscousergroup.org22

how it works

ebscousergroup.org23

check item status

ebscousergroup.org24

check item status

This brings a number of data points

together in one place:

• author, title, publication info

• location, call number, (barcode), status

• loan date, due date,

status, patron name and barcode

via the UI
1. Apps

2. Inventory

3. Items

4. Barcode (not

Keyword)

5. enter barcode

6. Search

7. open the holdings

accordion

…et voila re status

8. Circulation log

9. enter Item barcode

10. apply

…et voila re loan history

via the web app
1. check item status

2. enter item barcode

…et voila re status

3. View loans

…et voila re loan history

ebscousergroup.org25

1

ebscousergroup.org26

2

(3)

ebscousergroup.org27

3

ebscousergroup.org28

4?

ebscousergroup.org29

how it works

• GET -G -d 'limit=1000' /locations provides location ids and names so that the permanentLocationId can be translated

• GET /item-storage/items?query=barcode=="$barcode" provides holdingsRecordId, itemId, and status.name

• GET /holdings-storage/holdings/$holdingsRecordId provides callNumber, instanceId, and permanentLocationId

• GET /instance-storage/instances/$instanceId provides title, contributors(s), and publication info

• GET /circulation/loans?query=itemId=="$itemId" provides dueDate, loanDate, returnDate, status.name, and userId

• GET /users?query=id=="$userId" provides patron's name and barcode

• Perl sorts the loans on loanDates

• JavaScript hides the loans from view and displays them on demand

ebscousergroup.org30

how it works

ebscousergroup.org31

delete items

or

update periodicals

ebscousergroup.org32

delete items

or, update periodicals

While weeding our periodicals we found

that the UI can only delete one item at a

time. We were weeding a lot of items

and updating our holdings statements.

So many clicks! So little time!

via the UI
1. Apps

2. Inventory

3. Search…

4. Select

5. Open holdings

accordion

6. Click on barcode

7. Actions

8. Delete

9. Delete

rinse and repeat 5-9

(total items x 5)

+ 5

= total clicks

via the web app
1. delete items

2. enter and instance hrid

(or search periodicals)

3. Next…

4. select all items (or

otherwise be particular)

5. delete selected items

6. are you sure?

ebscousergroup.org33

1 or 1

ebscousergroup.org34

2

3

ebscousergroup.org35

3b

ebscousergroup.org36

4

5

ebscousergroup.org37

6

ebscousergroup.org38

how it works

Re searchPeriodiclas.pl

• GET /search/instances/ids?query=title="$query" just returns instanceIds

• GET /instance-storage/instances?query=id=="$instanceId" provides titles HRIDs

• GET /holdings-storage/holdings?query=instanceId=="$instanceId" provides permanentLocationIds (we only want periodical locations)

Re selectItems.pl’s:

• GET /instance-storage/instances?query=hrid==$hrid which provides the instanceId and the title

• GET /holdings-storage/holdings?query=instanceId==$instanceId which provides the callNumber, holdingsRecordId, holdingsStatements, and

permanentLocationId

• GET /item-storage/items?query=holdingsRecordId==$holdingsRecordId which provides the itemId, barcode, chronology, enumeration, volume, etc.

Links to the UI provide an opportunity to edit holdings statements and javaScript enables all items to be selected at once. The hrid along with the UUIDs of

selected items are then sent to areYouSure.pl which, if you are sure, forwards the itemIds to deleteItemsAPI.pl which then, for each UUID…

• DELETE /item-storage/items/$itemId

ebscousergroup.org39

how it works

ebscousergroup.org40

eBook updates

ebscousergroup.org41

eBook updates

We want our eBook (& eVideo)

subscriptions, DDA packages, etc to be

discoverable in our Locate OPAC so this

web app creates instances, holdings,

and items that can be removed if/when

DDA titles get dropped or a subscription

is cancelled. New titles are added to a

queue to be loaded from the command

line. Old titles can be removed directly

via the web app.

via the UI
n/a

via the web app
1. eBook updates

2. select a vendor

for new titles:

3. choose a file

4. make it so

For old titles:

3. remove

4. make it so

5. enter vendorId(s)

6. remove item(s),

holdingsRecord(s), and

instance(s)

ebscousergroup.org42

1

ebscousergroup.org43

2

3

4 or 5

or 3 & 4

ebscousergroup.org44

ebscousergroup.org45

how it works

if, after selecting a vendor, a file is chosen for “add” :

− The vendor code is prepended to the filename which is then added to a queue for overnight processing which will

• POST JSONs to /instance-storage/instances (instance.source = vendorCode), /holdings-storage/holdings, & item-storage/items

• store the relevant vendorId, instanceId, holdingsRecordId, & itemId in a MySQL table named eBookUpdates.folioUUIDs

if “remove” is selected and vendorIds are listed in the textarea :

− SELECT itemId, holdingsRecordId, instanceId FROM eBookUpdates WHERE vendorCode=$vendorCode and vendorId=$vendorId

− DELETE /item-storage/items/$itemId

− DELETE /holdings-storage/holdings/$holdingsRecordId

− DELETE /instance-storage/instances/$instanceId

− DELETE FROM eBookUpdates WHERE vendorId=$vendorId

if “remove” is selected and an asterisk is entered in the textarea (aka remove all instances for that vendor) :

− SELECT itemId, holdingsRecordId, instanceId FROM eBookUpdates WHERE vendorCode=$vendorCode

− etc, etc, etc…

ebscousergroup.org46

how it works : adding eBooks

ebscousergroup.org47

how it works : removing eBooks

ebscousergroup.org48

update users

ebscousergroup.org49

update users

Every once in a while we change fixed

due dates and expiration dates for

employee (faculty and staff), or student

patronGroups. It isn’t a big deal to

change due dates in the UI but changing

user expiration dates en masse is not an

option, so, might as well do both and

make have the “make it so” form guess

what those patronGroups and relevant

dates should be.

via the UI
re due dates

1. Apps

2. Settings

3. Circulation

4. Loans:Fixed due date

schedules

5. Faculty due date

6. Edit

7. change Date from

8. change Date to

9. change Due date

10. Save & Close

re user expiration dates

n/a

via the web app
1. update users

• change dates, maybe

2. make it so

ebscousergroup.org50

1

ebscousergroup.org51

2

ebscousergroup.org52

how it works

The enterData.pl form knows what day it is and makes an educated guess re which patron group you want to fuss with and

what the new due and expiration dates should be. You can, of course, change anything that it doesn’t get right.

Re expiration dates:

• If a person currently has either an employee or a student “role” in Banner (and matches the patronGroup in question):

1. GET /users?query=barcode==$barcode returns a JSON document which, after massaging with regex to replace…

• "active":false with "active":true, and

• the old expiration date (whatever it is) with the new expiration date

…can be used to replace the user record via:

2. PUT -d '$json' /users/$userId

ebscousergroup.org53

how it works

Re due dates (aka fixed due date schedules) :

3. GET /fixed-due-date-schedule-storage/fixed-due-date-schedules?query=name="faculty*" returns a JSON

document which, after massaging with regex to replace…

• "from" : "2023-02-03T00:00:00.000+00:00", with "from" : "2024-02-03T00:00:00.000+00:00",

• "to" : "2024-02-14T04:59:59.000+00:00", with "to" : "2025-02-14T04:59:59.000+00:00",

• and "due" : "2024-02-15T04:59:59.000+00:00" with "due" : "2025-02-15T04:59:59.000+00:00"

…can be used to replace the fixedDueDateSchedules record via:

4. PUT -d '$json' /fixed-due-date-schedule-storage/fixed-due-date-schedules/$fixedDueDateScheduleId

ebscousergroup.org54

how it works

ebscousergroup.org55

add titles

(along with a call number and a barcode)

ebscousergroup.org56

add titles

This web app boils the questions that

need to be answered down to the

minimum and makes educated guesses

for most of those leaving little for the

librarian to do other than scan a barcode.

via the UI
1. Apps

2. Data import

3. choose files

4. browse, select, Open

5. select Job profile

6. Actions

7. Run

8. Run

9. click File name

10. click “Created”

11. Add holdings

12. open Permanent

location select box

13. select location

14. open call number type

select box

15. select call number type

16. enter call number

17. Save and close

18. Add item

19. click on the barcode

text box

20. scan the barcode

21. open material type

select box

22. select material type

23. scroll down

24. open permanent loan

type select box

25. select loan type

26. Save and close

via the web app
1. add titles

• select location, maybe

2. Choose file

3. browse, select, Open

4. next

• double check the

• call number

• call number type

• loan type

• Location

• material type

5. Scan the barcode

• make it so

ebscousergroup.org57

1

ebscousergroup.org58

2

4

3

ebscousergroup.org59

5

ebscousergroup.org60

Check your work in either FOLIO or Locate…

…and then add another title.

ebscousergroup.org61

how it works

• chooseFile.pl collects the $locationGroup from whichLocation.pl

• scanBarcode.pl displays the title and puts the call number that is in the 050 in the call number text box

• for the circulating collection there is logic that looks at the call number to determine what the location should be

• the call number type (LC), loan type (can circulate), and material type (book) are simple defaults

• makeItSo.pl saves the MARC as [username].mrc and then…

1. POST -d '{"fileDefinitions":[{ "name":“[username].mrc" }]}' /data-import/uploadDefinitions

this creates an uploadDefinition which supplies an $uploadDefinitionId, $fileDefinitionsId, and $jobExecutionId

2. POST -d @[username].mrc /data-import/uploadDefinitions/$uploadDefinitionId/files/$fileDefinitionsId

this actually uploads the MARC to the server

* this requires -H 'Content-type: application/octet-stream‘ rather than the usual -H 'Content-type: application/json‘ *

ebscousergroup.org62

how it works, continued

• With the help of regular expressions replace the metadata in the $uploadDefinition with the necessary jobProfileInfo

including the id, name, and datatype

3. POST -d '$uploadDefinitiion' /data-import/uploadDefinitions/$uploadDefinitionId/processFiles

this tells FOLIO to get the job, Create instance and SRS MARC Bib, done – but it takes a moment, so…

4. GET /metadata-provider/jobLogEntries/$jobExecutionId

…repeats itself, and counts Mississippis, until the value of totalRecords is greater than zero. Once that’s done the entry

will supply the $sourceRecordId so that…

5. GET /source-storage/records/$sourceRecordId, which also requires counting Mississippis, can supply the $instanceId

and…

ebscousergroup.org63

how it works, continued

• …a simple $json can be assembled:

{

"instanceId":"$instanceId",

"callNumber":"$callNumber",

"callNumberTypeId":"$callNumberTypeId",

"permanentLocationId":"$locationId“

}

6. POST -d '$json' /holdings-storage/holdings then creates the holdingsRecord and supplies the $holdingsRecordId

ebscousergroup.org64

how it works, continued

• another simple $json can then be assembled to create the item record:

{

"holdingsRecordId":"$holdingsRecordId",

"barcode":"$barcode",

"materialTypeId":"$mtypeId",

"permanentLoanTypeId":"$loanTypeId",

"status" : {"name" : "Available"}

}

7. POST -d '$json‘ /item-storage/items then create’s the item and Bob’s your uncle.

• links into FOLIO and Locate are then provided so that you can check your work

ebscousergroup.org65

how it works, continued

ebscousergroup.org66

how it works, continued

ebscousergroup.org67

comments? ideas? thoughts? questions?

ebscousergroup.org68

Thank You

gdobson@drew.edu / folio.drew.edu

